

The 42nd Annual Asphalt Paving Conference, Charleston, WV February 17, 2022

Machine Vision-Based Sensing and Analytics for Intelligent Compaction and Tack Coat Inspection

Fei Dai, Ph.D.
Associate Professor
Dept. of Civil & Environmental Engineering
West Virginia University

Machine Vision for Intelligent Compaction

AC Pavement Compaction

- The number of roller passes
- The starting and the end point of each pass
- The total number of coverages

Roller Compaction

Pavement Failures

Too Much Compaction

Bleeding and Rutting

Cracking

Too Little Compaction

Potholes

Can we track a roller pattern in pavement compaction operations?

- >From Owners' Perspective
 - Evidence
 - Ensure operations meet requirements

- >From Contractors' Perspective
 - Evidence
 - Prove operations meet requirements

Intelligent Compaction (IC)

High Cost BUT Signal Disturbance

Opportunity

Optical Image
Day & Night

Thermal Image
Day & Night

Objective

 To develop thermal imaging-based technology for automatic tracking and mapping of paths for economical, real-time roller control in pavement compaction operations

Proposed Overall Framework

Heading Direction Estimation

$$ax + by + c + dx^2 + exy + fy^2 = 0$$
 (1)

$$\varphi = \begin{cases} -\frac{\pi}{2} + \arctan(-\frac{a}{b}), & \frac{a}{b} \le 0\\ \frac{\pi}{2} + \arctan(-\frac{a}{b}), & \frac{a}{b} > 0 \end{cases}$$
 (2)

Linear Translation Estimation

$$\nabla I \cdot \boldsymbol{d} + I_t = 0 \tag{1}$$

$$\boldsymbol{d} = -\left(\int_{S} \omega \nabla I^{T} \nabla I\right)^{-1} \int_{S} \omega \nabla I^{T} I_{t} \quad (2)$$

Optical Flow Equation

Lateral Position Optimization

$$l = P_c' M_c' - P_c' O_c' = \frac{a_l + a_r}{2(a_r - a_l)} W - \sin \varphi \cdot \tan \theta \cdot D$$

Global Position Estimation

Prototype Development: Hardware

Component	Model	Performance Specification
		Spectral Band: 8-14 m Field of View: 24°h×18°v
Infrared Camera		Resolution: 704×480 pixels Focal Length: 19 mm
	PathFindIR Camera	Maximum Frame Rate: 30 fps
Laptop Computer		Processor: Intel® Core TM i5-10210U Processor @1.80 GHz Memory: 16 GB
	ThinkPad X1 Carbon	Display Type: 14.0" (1920×1080)
Digital Video Recorder	Observer TM 4100	Integrated GPS, Wi-Fi, and Ethernet H.264 Video Compression Format Forward-facing RCA Port for Live Viewing on External Monitor
Video Monitor	SV-LCD70RP	LCD System: 7-inch Resolution: 1400 (RGB)

Prototype Development: Software

- Programming tool
 - Microsoft Visual Studio 2015 and Visual C++
 - OpenCV 3.0 Library

Laboratory Testing

Infrared Camera
Data Collection

Tracking Target
Represent Cart's
Location

Data Logger
Data Storage and
Transmission

Canon EOS 5D Mark III Pavement Mode ower Supply Asphalt Shingle

Canon CameraGround Truth

Trajectory Estimation

Pavement Model

Asphalt Shingle + Heating Mat

(35°C)

Laboratory Testing

Pre-designed Rolling Pattern in Laboratory Testing

Laboratory Testing

		Lateral Directi	on	
	Mean Absolute Error (mm)			Deviation nm)
	W	w/o	W	w/o
Run 1	4.9	24.9	5.1	22.6
Run 2	4.6	29.7	5.5	17.3
Run 3	5.1	18.0	4.4	16.9

	Longitudinal Direction	on
	Incremental Translational Error (mm)	Cumulative Error Rate (%)
Run 1	65.6	0.538
Run 2	103.9	0.852
Run 3	47.4	0.390

Field Testing

Hot mix asphalt (HMA) pavement on U.S. Route 50, outside Clarksburg, WV

Field Testing

Field Testing

Lateral Direction			Longitudina	al Direction	
	olute Error m)	Standard Deviation (cm)		Ground Truth (m)	Estimated (m)
W	w/o	W	w/o	939.7	946.6
3.3	25.8	3.5 29.9		Error	6.9 m (0.7%)

Accuracy of GPS in state-of-art IC roller: 3 cm

Data Collection

Hardware Selection

Timeline

2019

Provisional Patent

Conference Presentation

Algorithm Development

2020

Application

•Non-provisional Patent **Application**

2021

Paper Publication

Lab/Field Testing

Additional Lab/Field

Experiments

Economic Assessment

Technology Partnerships

2022 and Forward

Future Work

This cannot happen without help of industry and WVDOH!

Machine Vision for Tack Coat Inspection

What is Tack Coat?

- Tack coat is a thin layer of asphalt that ensures the bonding between an existing pavement and an asphalt overlay
- It is normally used for rehabilitation of constructed asphalt pavements

Severity of the Problem

- According to the latest Infrastructure Report Card, 20% of America's pavements are in poor condition
- Our region (Atlantic region) is even worse, with over 22% pavements are in poor condition that need rehabilitation
- Overlays make up large portion of the roadway paving

It Is Important to Apply Tack Coat Uniformly!

 Poor tack coat application may result in inadequate bonding, and later could cause slippage, shoving, and rutting of the overlay.

• Impacts:

- Inconvenient driving experience of the users
- Reduced service life of the pavement structure

Tack Coat Inspection

- Visual inspection performed by inspectors from state agencies (state DOTs)
 - Use inspection form to check the quality
 - Assessment of the level of uniformity based on subjective judgment
 - Manual

Non-uniform

Uniform

West Virginia Department of Transportation Division of Highways

Inspector's Bituminous Emulsion Tack Worksheet

AUTHORIZATION NO:	PROJECT NO:		ATTACHEMENT TO DWR:
LINE NO:	ITEM NO:		DATE:
PLAN ID:			
CONTRACTOR AND SIGNATURE OF C	ONTRACTO	R REP:	
TICKET NO:		ORIGINAL INVOICE NO:	
MATERIAL TYPE:		SOURCE OF MATERIAL:	

OBSERVATIONS – Comment below if any of the following are not met:

Traffic Control and Flaggers in place

Surface temp above 40 degrees F

Surface clean prior to placement

Existing Pavement		Target Application Rate (gal/yd²)*		
Condition		Undiluted □	Diluted (1:1) □	
New HMA		0.04 - 0.05	0.08 - 0.10	
Oxidized HMA		0.07 - 0.10	0.13 - 0.20	
Milled Surface		0.10 - 0.13	0.20 - 0.27	
PCC		0.07 - 0.10	0.13 - 0.20	

*Undiluted ≈60% Residual Asphalt, Diluted ≈30% Residual Asphalt, al footnotes from Table 408.11 apply.

APPLICATION RATE CHECKS

Uniform application of tack coat

Α	В	С	D	E	F	G	Н	I	J
Time	Start Station	End Station	Length (ft) C-B	Width (ft)	Area (yd²) (DxE)/9	Initial Reading (gal)	Final Reading (gal)	Amount Applied (gal) G-H	Rate (gal/yd²) //F

COMMENTS:	(See nandou			
	INSPECTOR:	28		

Opportunity to Enhance Tack Coat Inspection w/ UAV

- Unmanned aerial vehicles (UAV) have been widely used in the industry
- In comparison with boots on the ground,
 UAV offers benefits:
 - Accelerated data collection
 - Enhanced survey accuracy
 - Larger area coverage
 - Access to hard-to-reach locations
- Use of this technology opens pathways towards <u>alleviating the situation of current</u> <u>practice of coat inspection</u>

Affordable Cost (< \$2000)

Objective

- To investigate the application of UAV along with machine vision to measure the coverage uniformity of tack coats
 - Efficiently and accurately
 - Measurement conducted on UAV-captured images for decision support

Machine
Vision-based
Rating Model
for Tack Coat
Uniformity

Score	Grade
0-59	F
60-69	D
70-79	С
80-89	В
90-100	Α

Proposed Overall Framework

- Step I: Tack coat region segmentation and morphological processing
- Step II: Visual feature extraction of tack coats and uniformity rating model building

Tack Coat Instance Segmentation

Output

Mask R-CNN Architecture

Mask R-CNN: Class label, Bounding box, Object Contour Line

Faster R-CNN, YOLO, SSD...

Dataset for Model Training

	Image Amount
Training	1774
Validation	220
Total	1994

Morphological Binary Mask Erosion

- The binary mask image of the processed region contains false positive (FP) detection
- Apply morphological erosion operation to remove noises on the edges
 - Kernel size (20, 20)

Feature Extraction of Tack Coat Regions

- Grey Level Co-occurrence Matrix (GLCM) is applied to extract second order statistical texture features of the image based on the gray level variations [Fig. (a)]
- Each element (i, j) in GLCM matrix [Fig. (b)] is total of frequency that pixel value i occur in the specified spatial relationship to a pixel value j
 - Element (0, 0) is filtered to exclude the background pixels in calculation
- GLCM matrix is determined by the offset distance and angle between the pixels [Fig. (c)]

 Reference pixel value (j)

 Neighbor pixel value (j)

GLCM Features to Depict the Tack Coat Uniformity

- Six GLCM features generated: contrast, dissimilarity, homogeneity, energy, correlation, and angular second moment
- Global and local GLCM features
 - Feature extraction starts at angle of 0° and offset distance of 1 pixel until image is fully covered
 - It continues w/ increment of 45° and 5 pixels
 - Image is also subdivided for local features extraction at patch size (15, 15) pixels

Feature Testing and Selection

- Test and select the feature candidates that depict discriminative patterns
 - Use Pearson correlation matrix to measure the linear correlation of independent variables
 - Value closer to 0, 1, -1 implies weaker, stronger positive and negative correlation, respectively
 - Remove features that are highly correlated (e.g., correlated features to homogeneity, energy = 0.91 and ASM = 0.82)
 - Use back elimination to evaluate the feature performance
 - Select significance level = 5% or P-value = 0.05
 - Features have high significance performance if P-value <
 0.05, features with P-value greater than 0.05 are removed

P-value
0.0059
0.00096
0.855
0.046
0.000068
0.11

Uniformity Rating Model Building

- Label the image set with tack coat uniformity level
- Apply machine learning algorithm with the selected features to build the model
 - Random forest
 - Support vector machine (SVM)
 - Light gradient boosting machine (LGBM)

Tack Coat Grade
Α
В
С

	Image Amount		
Training	750		
Validation	150		
Total	900		

Preliminary Results: Tack Coat Instance Segmentation

- Intersection over union (IoU)
 - Green contour = Ground truth
 - Red contour = Predicted region
- Performance evaluation

	Only Mask R-CNN Highest Mean		
IoU	0.93	0.85	

Tack Coat Detection by Deep Learning Method (Mask R-CNN)

Preliminary Results: Morphological Binary Mask Erosion

	Only Mask R-CNN		With Erosion		
	Highest	Mean	Highest	Mean	
IoU	0.93	0.85	0.95	0.89	

Preliminary Results: Uniformity Rating Model

- The model was first trained with all the 102 features
- Accuracy was improved using 63 discriminative features
 - Using Pearson corelated matrix, 17 highly correlated features were not used
 - Using back elimination method, 22 features w/ P-value > 0.05 were further removed

Model	Before Feature Selection		After Feature Selection			
	Correct #	Total #	Accuracy	Correct #	Total #	Accuracy
	Predictions	Predictions		Predictions	Predictions	
RF	108	160	0.68	112	160	0.70
SVM	113	160	0.71	135	160	0.84
LGBM	125	160	0.78	145	160	0.91

Preliminary Results: Uniformity Rating Model

Ground Truth C Predicted grade C

Ground Truth A
Predicted grade A

Ground Truth A
Predicted grade A

Ground Truth C
Predicted grade C

Ground Truth B
Predicted grade B

Ground Truth A
Predicted grade A

Future Work

- Data collection
 - Increase the dataset to improve the rating model accuracy
 - e.g., use drone to collect tack coat images in the field
- Further testing and evaluation of feature selection methods and training models
- Exploration of methods to localize the uniformity regions

Acknowledgement

Collaborators

John P. Zaniewski

Graduate Students

Linjun Lu Lead Researcher

Aida da Silva Lead Researcher

Mohhammad Sujon

Sourav Dutta

Agencies

Thank You! Questions?

Fei Dai, Ph.D.

Tel: (304) 293-9940

Email: fei.dai@mail.wvu.edu